University of Calcutta under Graduate Curriculum under Choice Based Credit System (CBCS) Lesson Plan with Syllabus for Chemistry (G) Semester-VI Total Marks-100 (Credits: Theory-04, Practical-02) (Theory: 50; Practical: 30; Internal Assessment: 10; Attendance: 10) [Marks obtained in this course will be taken to calculate SGPA & CGPA]

Tentative	Tentative may subject to change: Theory Class				
Months	Week	Unit	Торіс	No. of Lectures for Each Section	Teacher
February	3 rd	1	 Optical Methods of Analysis Origin of spectra and interaction of radiation with matter Fundamental laws of spectroscopy and selection rules 	2	PKD
		2	 <i>Thermal methods of analysis</i> Theory of thermogravimetry (TG) 	2	SM
		4	 Chromatography Classification, principle, and efficiency of the technique 	2	TKL
March	1 st	1	 Optical Methods of Analysis Beer-Lambert's law and its validity 	2	PKD
		2	<i>Thermal methods of analysis</i>the basic principle of instrumentation	2	SM
		4	 Chromatography Mechanism of separation: adsorption, partition & ion exchange 	2	TKL
	2 nd	1	 UV-Visible Spectrometry Basic principles of instrumentation for single and double beam instrument 	2	PKD
		2	 Thermal methods of analysis Techniques for quantitative estimation of Ca and Mg from their mixture 	2	SM
		4	 <i>Chromatography</i> Development of chromatograms: frontal, elution, and displacement methods 	2	TKL
	3 rd	1	 Basic principles of quantitative analysis Estimation of metal ions from aqueous solution 	2	PKD
		3	 <i>Electroanalytical methods</i> Classification of electroanalytical methods, the basic principle of pH metric 	2	SM
		4	 Chromatography Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC 	2	TKL
	4 th	1	Basic principles of quantitative analysis Concept of geometrical isomers and keto-enol tautomer	2	PKD
		3	<i>Electroanalytical methods</i>potentiometric and conductometric titrations	2	SM
		4	 Chromatography Qualitative and quantitative aspects of chromatographic methods of analysis: GPC, TLC 	2	TKL
	5 th		**Student Lecture: On Absorption Spectroscopy	1	PKD, SM, TKL

Months	Week	Unit	Торіс	No. of	Teacher
				for Each Section	
April	1 st	1	 Basic principles of quantitative analysis Determination of the composition of metal complexes using Job's method 	2	PKD
		3	 <i>Electroanalytical methods</i> Techniques used for the determination of equivalence points 	2	SM
		4	 Chromatography Qualitative and quantitative aspects of chromatographic methods of analysis: HPLC 	2	TKL
	2 nd	1	 Infrared Spectrometry Basic principles of instrumentation for single and double beam instrument 	2	PKD
		3	 Electroanalytical methods Techniques used for the determination of pKa values 	2	SM
		4	 Stereoisomeric separation and analysis: Measurement of optical rotation, calculation of Enantiomeric excess (ee) 	2	TKL
			McQ based Assessment for all 3-section on Unit- 1, 2 and 4	1	PKD, SM, TKL
	3 rd	1	 Infrared Spectrometry Interpretation of data and importance of isotope substitution 	2	PKD
		4	 Separation techniques Solvent extraction: Classification, principle, and efficiency of the technique 	2	SM
		4	 diastereomeric excess (de) ratios and determination of enantiomeric composition using NMR 	2	TKL
	4 th	1	 Flame Atomic Absorption and Emission Spectrometry Basic principles of instrumentation 	2	PKD
		4	 Separation techniques Mechanism of extraction: extraction by solvation and chelation 	2	SM
		4	Chiral solvents and chiral shift reagents	2	TKL
May	1 st		**** Library work assignment		PKD, TKL, SM
	2 nd	1	Flame Atomic Absorption and Emission Spectrometry	2	PKD
			 Techniques of atomization and sample introduction 		
		4	Separation techniques The technique of extraction: batch, continuous, and counter-current extractions	2	SM
		4	 Chromatographic techniques using chiral columns (GC) 	2	TKL

		1		1	
	3 rd	1	 Flame Atomic Absorption and Emission Spectrometry Method of background correction and sources of chemical interferences 	2	PKD
		4	 Separation techniques Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution 	2	SM
		4	Chromatographic techniques using chiral columns (HPLC)	2	TKL
	4 th	1	 Flame Atomic Absorption and Emission Spectrometry Techniques for the quantitative estimation of trace levels of metal ions from water samples 	2	PKD
		4	 Separation techniques Extraction of organic species from the aqueous and nonaqueous media 	2	SM
		4	 Role of computers in instrumental methods of analysis 	2	TKL
June	1 st		**Guest Lecture		
	2 nd	1	 Flame Atomic Absorption and Emission Spectrometry Continue Techniques for the quantitative estimation of trace levels of metal ions from water samples Some solutions to the question 	2	PKD
		4	Homework assignmentQuestion solution	2	SM
		4	 <i>Continue</i> Role of computers in instrumental methods of analysis Question solution 	2	TKL
	3 rd	Internal Assessment	McQ based Internal Assessment for all sections		PKD, SM, TKL

Tentative may subject to change: Practical Class					
Months	Weeks	Торіс	Teacher		
March	1 st to 2 nd	 Separation Techniques Laboratory work discussion Discussion of Chromatography Detailed discussion of Paper chromatography (Principle) 	PKD		
	3 rd to 4 th	 Chromatography Separation and identification of the monosaccharides present in the given mixture (Glucose & fructose) by paper chromatography. Reporting the R_f values 	-		
	5 th	 Chromatography Detailed discussion of Thin Layer chromatography (TLC) (Principle) 			
April	1 st	 <i>Chromatography</i> Separate a mixture of Sudan yellow and Sudan Red by TLC technique and identify them based on their R_f values 	PKD		
	2 nd	 Chromatography Chromatographic separation of the active ingredients of plants, flowers, and juices by TLC 			
	2 nd to 3 rd	 Solvent Extractions To separate a mixture of Ni²⁺ and Fe²⁺ by complexation with DMG and extracting the Ni²⁺-DMG complex in chloroform, and determine its concentration by spectrophotometry 			
	4 th to 5 th	Analysis of soilDetermination of pH of soil			
May	1 st to 2 nd	Analysis of soilEstimation of calcium, magnesium, phosphate			
	3 rd	 Ion exchange Determination of exchange capacity of cation exchange resins and anion exchange resins 			
	4 th	 Spectrophotometry Determination of pK_a values of indicator using spectrophotometry 			
June	1 st	Determination of chemical oxygen demand (COD)			
	2 nd	 Determination of Biological oxygen demand (BOD) 			