University of Calcutta under Graduate Curriculum under Choice Based Credit System (CBCS)

$Lesson\ Plan\ with\ Syllabus\ for\ Chemistry\ (G)\ Semester-IV$

Total Marks-100 (Credits: Theory-04, Practical-02)

(Theory: 50; Practical: 30; Internal Assessment: 10; Attendance: 10) [Marks obtained in this course will be taken to calculate SGPA & CGPA]

Tentative	may subj	ect to c			
Months	Week	Unit	Торіс	No. of Lectures for Each Section	Teacher
February	3 rd	1	Alcohols, Phenols, and Ethers Alcohols Preparation: 1°-, 2°- and 3°- alcohols: using a Grignard reagent, reduction of aldehydes, ketones, carboxylic acid, and esters	2	TKL
		4	Amines and Diazonium Salt Amines: strength of organic bases; Preparation: from alkyl halides, Hofmann degradation	1	SM
		6	 Crystal Field Theory (CFT) Postulates of Crystal field theory Crystal field splitting of Octahedral complex and effects for weak and strong field ligand 	1	PKD
March	1 st	1	Alcohols, Phenols, and Ethers Alcohols Reactions: With sodium, oxidation (alkaline KMnO ₄ , acidic dichromate)	2	TKL
		4	Amines and Diazonium Salt Reactions: with HNO ₂ (distinction of 1°-, 2°- and 3°- amines), Schotten- Baumann reaction	1	SM
		6	 Crystal Field Theory (CFT) Crystal field splitting of Tetrahedral complex and factors affecting the magnitude of D Comparison of CFSE for Octahedral and Tetrahedral complexes, Spectrochemical series 	1	PKD
March	2 nd	1	Alcohols, Phenols, and Ethers Alcohols Diols: Pinacol-pinacolone rearrangement (with mechanism) (with symmetrical diols only)	2	TKL
		4	Amines and Diazonium Salt Diazo coupling reaction (with mechanism)	1	SM
		6	 Crystal Field Theory (CFT) Tetragonal distortion of Octahedral geometry, Jahn-Teller distortion, Square planar geometry 	1	PKD
	3 rd	1	Alcohols, Phenols, and Ethers Phenols Preparation: cumene hydroperoxide method, from diazonium salts; acidic nature of phenols	2	TKL
		4	Amines and Diazonium Salt Diazonium salts: Preparation: from aromatic amines; Reactions: conversion to benzene, phenol, benzoic acid, and nitrobenzene	1	SM
		7	 Quantum Chemistry and Spectroscopy Basic Concept of Electromagnetic radiation and its interaction with matter 	1	PKD
	4 th	1	 Alcohols, Phenols, and Ethers Phenols Reactions: electrophilic substitution: nitration and halogenations; Reimer-Tiemann reaction, 	2	TKL

		Schotten Baumann reaction, Fries rearrangement, and Claisen rearrangement		
	4	Amines and Diazonium Salt Nitro compounds (aromatic): reduction under different conditions (acidic, neutral, and alkaline)	1	SM
	7	Quantum Chemistry and Spectroscopy Wave-particle duality, the link between spectroscopy and quantum chemistry	1	TKL
5 th		**Student Lecture: On Crystal Field Theory (CFT)	1	PKD, SM. TKL

Months	Week	Unit	Topic	No. of Lectures for Each Section	Teacher
April	1 st	1	Alcohols, Phenols, and Ethers Ethers Preparation: Williamson's ether synthesis; Reaction: cleavage of ethers with HI	2	TKL
		5	Amino Acids and Carbohydrates Amino Acids Preparations (glycine and alanine only): Strecker synthesis, Gabriel's phthalimide	1	SM
		7	 Quantum Chemistry and Spectroscopy Spectroscopy and its importance in chemistry types of spectroscopy 	1	PKD
	2 nd	2	Carbonyl Compounds Aldehydes and Ketones Preparation: from acid chlorides, nitriles, and Grignard reagents; general properties of aldehydes and ketones	2	TKL
		5	Amino Acids and Carbohydrates Amino Acids Synthesis; general properties; zwitterion, isoelectric point	1	SM
		7	 Quantum Chemistry and Spectroscopy Difference between atomic and molecular spectra Postulates of quantum mechanics and quantum mechanical operator 	1	PKD
			McQ based Assessment for all 3-section on Unit- 1, 4 & 6	1	PKD, SM, TKL
	3 rd	2	Carbonyl Compounds Aldehydes and Ketones Reactions: with HCN, NaHSO ₃ , NH ₂ -G derivatives and with Tollens' and Fehling's reagents; iodoform test; aldol condensation (with mechanism)	2	TKL
		5	Amino Acids and Carbohydrates Carbohydrates classification and general properties; glucose and fructose: constitution	1	SM

		7	Quantum Chemistry and Spectroscopy ■ Free particle, Particle in a 1-D box	1	PKD
	4 th	2	Carbonyl Compounds Aldehydes and Ketones Cannizzaro reaction (with mechanism), Wittig reaction, benzoin condensation; Clemmensen reduction, Wolff-Kishner reduction	2	TKL
		5	Amino Acids and Carbohydrates Carbohydrates Osazone formation; oxidation-reduction reactions	1	SM
		7	 Quantum Chemistry and Spectroscopy Normalization of wave functions and concept of zero-point energy Rotational Motion: Schrodinger equation of a rigid rotator and its results 	1	PKD
May	1 st		**** Library work assignment		PKD, TKL, SM
	2 nd	3	 Carboxylic acid and their derivatives Carboxylic acids Strength of organic acids: a comparative study with emphasis on factors affecting pK values Preparation: acidic and alkaline hydrolysis of esters (B_{Ac}2 and A_{AC}2 mechanisms only) and from Grignard reagents 	2	TKL
		5	Amino Acids and Carbohydrates Carbohydrates Ascending (Kiliani-Fischer method) and descending (Ruff's method) in monosaccharides (aldoses only)	1	SM
		7	 Quantum Chemistry and Spectroscopy Quantization of rotational energy level Microwave spectra of diatomic molecules and selection rules 	1	PKD
	3 rd	3	 Carboxylic acid and their derivatives Carboxylic acids derivatives Preparation: acid chlorides, anhydrides, esters, and amides from acids Reactions: Interconversion among acid derivatives 	2	TKL
		5	Amino Acids and Carbohydrates Mutarotation	1	SM
		7	 Quantum Chemistry and Spectroscopy Structural information derived from rotational spectroscopy 	1	PKD
	4 th	3	Carboxylic acid and their derivatives Carboxylic acids derivatives Reactions: Claisen condensation	2	TKL
		7	 Quantum Chemistry and Spectroscopy Vibrational Motion: Schrodinger equation of a linear harmonic oscillator and its results 	1	PKD

June	1 st		**Guest Lecture		
			· · Guest Lecture		
	2 nd	3	 Carboxylic acid and their derivatives Reactions: Perkin reaction Question answers discussion 	2	TKL
		7	 Quantum Chemistry and Spectroscopy Quantization of vibrational energy levels, selection rules 	1	PKD
			 Question answers discussion 	1	SM
		Internal Assessment	McQ based Internal Assessment for all sections		PKD, SM, TKL

Months	Weeks	Topic	Teacher
September	3 rd	 Laboratory work discussion 	TKL
	4 th to 5 th	Qualitative Analysis of Single Solid Organic Compound(s)	
		• Experiment A: Detection of special elements (N, Cl, and S) in organic compounds	
October	1 st to 2 nd	• Experiment B: Solubility and Classification (solvents: H ₂ O, dil. HCl, dil. NaOH)	
November	1 st to 2 nd	• Experiment C: Detection of functional groups: Aromatic -NO ₂ , Aromatic -NH ₂ , -COOH	
	3 rd to 4 th	 Experiment C: Carbonyl (no distinction of – CHO and >C=O needed), -OH (phenolic) in solid organic compounds 	
December	1 st to 2 nd	Experiments A - C with unknown (at least 6) solid samples containing not more than two of the above type of functional groups should be done	
	3 rd to 4 th	Experiments A - C with unknown (at least 6) solid samples containing not more than two of the above type of functional groups should be done	
January	1st to 2nd	Identification of a pure organic compound	
		Solid compounds: oxalic acid, tartaric acid, succinic acid, resorcinol, urea, glucose, benzoic acid and salicylic acid	
	3 rd to 4 th	Liquid Compounds: methyl alcohol, ethyl alcohol, acetone, aniline, dimethylaniline, benzaldehyde, chloroform and nitrobenzene	