University of Calcutta under Graduate Curriculum under Choice Based Credit System (CBCS) Lesson Plan with Syllabus for Chemistry (G) Semester-II Total Marks-100 (Credits: Theory-04, Practical-02) (Theory: 50; Practical: 30; Internal Assessment: 10; Attendance: 10) [Marks obtained in this course will be taken to calculate SGPA & CGPA]

Tentative	, may sut	may subject to change:			
Months	Week	Unit	Торіс	No. of Lectures for Each Section	Teacher
March 3 rd	3 rd	1	 Thermodynamics Some basic concepts and the zeroth law of thermodynamics 	2	PKD
		2	 Chemical Equilibrium Thermodynamic conditions for equilibrium, degree of advancement Variation of free energy with the degree of advancement 	1	SM
		6	 Aliphatic Hydrocarbons Alkanes Preparation: catalytic hydrogenation, Wurtz reaction, Kolbe's synthesis 	1	TKL
	4 th	1	 <i>Thermodynamics</i> Concept of heat and work in different processes Joule's experiment and the first law of thermodynamics 	2	PKD
		2	 <i>Chemical Equilibrium</i> Equilibrium constant and standard Gibbs free energy change Definitions of K_P, K_C, and K_X and relation among them 	1	SM
		6	 Aliphatic Hydrocarbons Alkenes Preparation: elimination reactions: dehydration of alcohols and dehydrohalogenation of alkyl halides 	1	TKL
April 1 st	1 st	1	 <i>Thermodynamics</i> Joule-Thomson experiment and the concept of enthalpy Concept of Standard sates 	2	PKD
		2	 Chemical Equilibrium Van't Hoff's reaction isotherm, isobar, and isochoric from different standard states 	1	SM
		6	 Aliphatic Hydrocarbons Alkenes Reactions: addition of bromine, the addition of HX [Markownikoff's addition (with mechanism)] 	1	TKL
	2 nd	1	 <i>Thermodynamics</i> Laws of Thermochemistry The physical concept of entropy and the 2nd law of thermodynamics 	2	PKD
		2	 Chemical Equilibrium Shifting of equilibrium due to change in external parameters e.g., temperature and pressure 	1	SM
		6	Aliphatic Hydrocarbons Alkenes • Reactions: anti-Markownikoff's addition, hydration, ozonolysis	1	TKL

3 rd 1	 Thermodynamics Concept of heat reservoirs, heat engines, and Carnot cycle 	1+1	PKD
2	 Chemical Equilibrium variation of the equilibrium constant with addition to inert gas 	1	SM
6	 Aliphatic Hydrocarbons Alkynes Preparation: acetylene from CaC₂; by dehalogenation of tetra halides and dehydrohalogenation of vicinal dihalides 	1	TKL
4 th 1	<i>Thermodynamics</i>Criteria for spontaneity and equilibrium	2	PKD
2	<i>Chemical Equilibrium</i>Le Chatelier's principle	1	SM
6	 Aliphatic Hydrocarbons Alkynes Reactions: formation of metal acetylides, the hydration reaction 	1	TKL
1	**Student Lecture: On 2 nd law of thermodynamics (Carnot Cycle)	1	PKD, SM, TKL

Months	Week	Unit	Торіс	No. of Lectures for Each Section	Teacher
May	1 st	3	Solutions Ideal solutions and Raoult's law	1	SM
		4	 Phase Equilibria Concept of Phases, Components, and degrees of freedom of a system Criteria of phase equilibrium and Gibbs Phase rule 	2	PKD
		7	 Error Analysis and Computer Applications Error analysis: accuracy and precision of quantitative analysis, determinate, indeterminate 	1	TKL
	2 nd	3	 Solutions deviations from Raoult's law- non-ideal solutions 	1	SM
		4	 <i>Phase Equilibria</i> Criteria of phase equilibrium and Gibbs Phase rule Derivation of Clausius-Clapeyron equation and its importance 	2	PKD
		7	 Error Analysis and Computer Applications Error analysis: systematic and random errors 	1	TKL
			McQ based Assessment for all 3-section on Unit-1, 2 & 6	1	PKD, SM, TKL

	3 rd	3	 Solutions Vapour pressure-composition and temperature-composition curves of ideal and non-ideal solutions Distillation of solutions 	1	SM
		4	 Derivation of Clausius-Clapeyron equation and its importance 	1	PKD
		7	 Error Analysis and Computer Applications Error analysis: methods of least squares and standard deviations 	1	TKL
	4 th	3	Solutions Lever rule Azeotropes 	1	SM
		4	 Phase Equilibria Phase diagrams of one-component systems (water and CO₂) 	2	PKD
		7	 Error Analysis and Computer Applications Computer applications: general introduction to computers, different components of a computer 	1	TKL
June	1 st		** Guest Lecture on 04.06.2022		PKD, TKL, SM
			McQ based Assessment for all 6-section on Unit-6 & 7		
	2 nd	3	Solutions Nernst distribution law and its applications solvent extraction 	1	SM
		0	Library work assignment	2	DIZD
		8	 <i>Redox Reactions</i> Ion electron method of balancing reaction Concept of Standard Redox potentials and Nernst equation 	2	PKD
		7	 Error Analysis and Computer Applications Computer applications: hardware and software; input and output devices 	1	TKL
	3 rd	5	Solids • Forms of solids, crystal systems, unit cells, Bravais lattice types, Symmetry elements	1	SM
		8	 <i>Redox Reactions</i> Influence of complex formation, precipitation, and change of pH on redox potentials 	2	PKD
		7	 <i>Error Analysis and Computer Applications</i> binary numbers and arithmetic 	1	TKL
	441-		a 1:1	1	CM

		8	 <i>Redox Reactions</i> Influence of complex formation, precipitation, and change of pH on redox potentials Formal potential, the feasibility of redox titration 	2	PKD
		7	<i>Error Analysis and Computer Applications</i>Introduction to computer languages	1	TKL
			Quiz competition for all semester students on 30.06.2022		
July	1 st	5	 Solids Miller indices of different planes and interplanar distance Bragg's law 	1	SM
		8	 <i>Redox Reactions</i> Redox potential at the equivalence point and redox indicators 	2	PKD
	2 nd	Internal Assessment	McQ based Internal Assessment for all sections		PKD, SM, TKL

Tentative may subject to change: Practical Class

Months	Weeks	Торіс	Teacher
September	3 rd	 Laboratory work discussion 	SM
	4 th to 5 th	• Experiment 1: Study of the kinetics of acid- catalyzed hydrolysis of methyl acetate	
October	1 st to 2 nd	• Experiment 2: Study of the kinetics of decomposition of H ₂ O ₂ (Clock Reaction)	
November	1^{st} to 2^{nd}	• Experiment 3: Study of viscosity of unknown liquid (glycerol, sugar) with respect to water	
	3 rd to 4 th	• Experiment 4: Determination of solubility of sparingly soluble salt in water, in electrolyte with common ions, and in the neutral electrolyte (using a standard indicator)	
December	1 st to 2 nd	• Experiment 4: Determination of solubility of sparingly soluble salt in water, in electrolyte with common ions, and in the neutral electrolyte (using a standard indicator)continue	
	3 rd to 4 th	• Experiment 5: Preparation of buffer solutions and finding the pH of an unknown buffer solution by color matching method	
January	1 st to 2 nd	• Experiment 6: Determination of surface tension of a liquid using a Stalagmometer	
	3 rd to 4 th	• Repeat of experiments	