University of Calcutta under Graduate Curriculum under Choice Based Credit System (CBCS) Lesson Plan with Syllabus for Chemistry (G) Semester-III Total Marks-100 (Credits: Theory-04, Practical-02) (Theory: 50; Practical: 30; Internal Assessment: 10; Attendance: 10) [Marks obtained in this course will be taken to calculate SGPA & CGPA]

Months	Week	Unit	Торіс	No. of Lectures	Teacher
September (2021)	3 rd	1	 Chemical Bonding and Molecular Structure Ionic Bonding: General characteristics of ionic bonding Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds 	1	PKD
		4	 <i>Coordination Chemistry</i> Werner's coordination theory Valence Bond Theory (VBT): Inner and outer orbital complexes of Cr, Fe, Co, Ni, and Cu (coordination numbers 4 and 6) 	1	SM
		6	 Aromatic Hydrocarbons Benzene: Preparation: from phenol, by decarboxylation, from acetylene 	1	TKL
	4 th	1	 Chemical Bonding and Molecular Structure Statement of Born-Landé equation for calculation of lattice energy 	1	PKD
		4	 <i>Coordination Chemistry</i> Structural and stereoisomerism in complexes with coordination numbers 4 and 6 	1	SM
		6	 Aromatic Hydrocarbons Reactions: electrophilic substitution reaction (a general mechanism) nitration (with mechanism) 	1	TKL
	5 th	1	 <i>Chemical Bonding and Molecular Structure</i> Born-Haber cycle and its applications polarizing power and polarizability 	1	PKD
		4	 Coordination Chemistry Drawbacks of VBT IUPAC system of nomenclature 	1	SM
		6	 Aromatic Hydrocarbons Reactions: halogenations (chlorination and bromination) 	1	TKL
October	1 st	1	 <i>Chemical Bonding and Molecular Structure</i> Fajan's rules ionic character in covalent compounds bond moment, dipole moment, and percentage ionic character 	1	PKD
		5	 <i>ELECTROCHEMISTRY</i> 1) Ionic Equilibria: Strong, moderate, and weak electrolytes degree of ionization, factors affecting the degree of ionization ionization constant and ionic product of water 	1	SM

	6	 Aromatic Hydrocarbons Reactions: Friedel-Crafts reaction (alkylation and acylation) (up to 4 carbons on benzene) 	1	TKL
2 nd	1	 Chemical Bonding and Molecular Structure Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions based on VSEPR 	1	PKD
	5	ELECTROCHEMISTRY 1) Ionic Equilibria: • Ionization of weak acids and bases • pH scale • common ion effect	1	SM
	7	 Organometallic Compounds Introduction Grignard reagents: Preparations (from alkyl and aryl halide) 	1	TKL
		11/10 – 30/10 Puja Vacation		

Months	Week	Unit	Торіс	No. of Lectures	Teacher
November	1 st	1	 Chemical Bonding and Molecular Structure Covalent bonding: Hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal, and octahedral arrangements 	1	PKD
		5	 ELECTROCHEMISTRY 1) Ionic Equilibria: Salt hydrolysis-calculation of hydrolysis constant degree of hydrolysis and pH for different salts 	1	SM
		7	 Organometallic Compounds Grignard reagents: Preparations (from alkyl and aryl halide) 	1	TKL
	2 nd	1	 Chemical Bonding and Molecular Structure Covalent bonding: Concept of resonance and resonating structures in various inorganic and organic compounds 	1	PKD
		5	 ELECTROCHEMISTRY 1) Ionic Equilibria: Buffer solutions Solubility and solubility product of sparingly soluble salts – applications of solubility product principle 	1	SM
		7	Organometallic Compounds Reformatsky reaction	1	TKL
November	3 rd	1	Chemical Bonding and Molecular Structure MO approach: Rules for the LCAO method, bonding, and antibonding MOs and their characteristics for <i>s</i> - <i>s</i> , <i>s</i> - <i>p</i> , and <i>p</i> - <i>p</i> combinations of atomic orbitals, a nonbonding combination of orbitals	1	PKD
		5	<i>ELECTROCHEMISTRY</i> 2) Conductance:	1	SM

			 Conductance, cell constant, specific conductance, and molar conductance Variation of specific and equivalent conductance with dilution for strong and weak electrolytes 	1	THE OM
			McQ based Assessment for all 3-section on Unit-1, 4 and 7	1	TKL, SM, PKD
	4 th	1	 Chemical Bonding and Molecular Structure MO approach: MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including the idea of <i>s</i>- <i>p</i> mixing) and heteronuclear diatomic molecules such as CO, NO, and NO⁺ Comparison of VB and MO approaches 	1	PKD
		5	 ELECTROCHEMISTRY 2) Conductance: Kohlrausch's law of independent migration of ions; Equivalent and molar conductance at infinite dilution, and their determination for strong and weak electrolytes Ostwald's dilution law 	1	SM
		8	 Aryl Halides Preparation: (chloro- and bromobenzene): from phenol 	1	TKL
November	5 th		**** Library work assignment		PKD, TKL, SM
December	1 st	2	 Comparative study of p-block elements Group trends in electronic configuration, modification of pure elements, common oxidation states, inert pair effect 	1	PKD
		5	 ELECTROCHEMISTRY 2) Conductance: Application of conductance measurement (determination of solubility product and ionic product of water) Conductometric titrations (acid-base) Transport Number and principles Moving-boundary method 	1	SM
		8	 Aryl Halides Preparation: Sandmeyer reaction and effect of nitro substituent (activated nucleophilic substitution 	1	TKL
	2 nd	2	Comparative study of p-block elements their important compounds in respect of the following groups of elements: i) B-Al-Ga-In-Tl ii) C-Si-Ge-Sn-Pb	1	PKD

		5	 ELECTROCHEMISTRY 3) Electromotive Force: Faraday's laws of electrolysis rules of oxidation/reduction of ions based on half-cell potentials applications of electrolysis in metallurgy and industry 	1	SM
		8	 Aryl Halides Preparation: Sandmeyer reaction and effect of nitro substituent (activated nucleophilic substitution 	1	TKL
	3 rd	2	Comparative study of p-block elements their important compounds in respect of the following groups of elements:	1	PKD
		~	iii) N-P-As-Sb-Bi iv) O-S-Se-Te v) F-Cl-Br-I		C M
		5	 ELECTROCHEMISTRY 3) Electromotive Force: Chemical cells, reversible and irreversible cells with examples; Electromotive force of a cell and its measurement Nernst equation 	1	SM
		8	Class for slow learners	1	TKL
	4 th		**Guest Lecture		
	5 th		Christmas Holiday		
January	1 st	3	 Transition Elements (3d series) General group trends with special reference to the electronic configuration variable valency, colour 	1	PKD
		5	 <i>ELECTROCHEMISTRY</i> 3) Electromotive Force: Standard electrode (reduction) potential Electrochemical series 	1	SM
		8	Class for slow learners	1	TKL
	2 nd	3	 <i>Transition Elements (3d series)</i> magnetic and catalytic properties ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe, and Cu 	1	PKD
		5	 ELECTROCHEMISTRY 3) Electromotive Force: Concentration cells with and without transference liquid junction potential pH determination using hydrogen electrode and quinhydrone 	1	SM

		8	Class for advanced learners	1	TKL
	3 rd	3	 <i>Transition Elements (3d series)</i> Lanthanoids and actinoids: Electronic configurations, oxidation states, 	1	PKD
		5	ELECTROCHEMISTRY 3) Electromotive Force: Qualitative discussion of potentiometric titrations (acid-base, redox, precipitation)	1	SM
		8	Class for advanced learners	1	TKL
	4 th	3	 <i>Transition Elements (3d series)</i> Lanthanoids and actinoids: Colour, magnetic properties, lanthanide contraction, separation of lanthanides (ion exchange method only) 	1	PKD
		5	• Class for slow learners	1	SM
		9	Question answers discussion	1	TKL
February (2022)	1 st		Homework is given to slow learnersQuestion answers discussion	1	PKD
			Homework assignmentQuestion answers discussion	1	SM
	2 nd	Internal Assessment	McQ based Internal Assessment for all sections		PKD, SM, TKL

Months	Weeks	Торіс	Teacher
September	3 rd	Qualitative semi microanalysis of mixtures containing two radicals. Emphasis should be given to the understanding of the chemistry of different reactions Laboratory work discussion	SM
	4 th to 5 th	 Cation Radicals: Na⁺, K⁺, Ca²⁺, Sr²⁺, Ba²⁺ 	
October	1 st	 Cation Radicals: Al³⁺, Cr³⁺, Mn^{2+/}Mn⁴⁺, Fe³⁺, Co^{2+/}Co³⁺ 	
	2 nd	Cation Radicals: Ni ²⁺ , Cu ²⁺ , Zn ²⁺ , Pb ²⁺ , Sn ²⁺ /Sn ⁴⁺ , NH ₄ ⁺	

November	1^{st} to 2^{nd}	 Cation Radicals: All the cation radicals repeating the experiment 	
	3 rd	• Anion Radicals: F ⁻ , Cl ⁻ , Br ⁻ , BrO ₃ ⁻	
	4 th	 Anion Radicals: I⁻, SCN⁻, S²⁻, IO₃⁻, SO4²⁻ 	
December	1 st	 Anion Radicals: NO₃⁻, NO₂⁻, PO₄³⁻, AsO₄³⁻ 	
	2 nd	• Anion Radicals: $BO_3^{3^-}$, $CrO_4^{2^-}$, $Cr_2O_7^{2^-}$	
	3 rd to 4 th	• Anion Radicals: All the anion radicals repeating the experiment	
January	1 st to 4 th	Cation and anion radicals repeating experiments	